Calculation of Nonlinear Thermoelectric Coefficients of InAs1 xSbx Using Monte Carlo Method

نویسندگان

  • RAMIN BANAN SADEGHIAN
  • JE-HYEONG BAHK
  • ZHIXI BIAN
  • ALI SHAKOURI
چکیده

It was found that the nonlinear Peltier effect could take place and increase the cooling power density when a lightly doped thermoelectric material is under a large electrical field. This effect is due to the Seebeck coefficient enhancement from an electron distribution far from equilibrium. In the nonequilibrium transport regime, the solution of the Boltzmann transport equation in the relaxation-time approximation ceases to apply. The Monte Carlo method, on the other hand, proves to be a capable tool for simulation of semiconductor devices at small scales as well as thermoelectric effects with local nonequilibrium charge distribution. InAs1 xSbx is a favorable thermoelectric material for nonlinear operation owing to its high mobility inherited from the binary compounds InSb and InAs. In this work we report simulation results on the nonlinear Peltier power of InAs1 xSbx at low doping levels, at room temperature and at low temperatures. The thermoelectric power factor in nonlinear operation is compared with the maximum value that can be achieved with optimal doping in the linear transport regime.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of airkerma conversion factor to personal dose equivalent at various depths using the Monte Carlo Code GATE

Several studies have been done with the aim of improving the quality of the radiation protection measurement in radiology and nuclear medicine. Among  different subjects which are capable to be considered in this area, the measurement of the operational quantities of protection against the radiation ,such as, personal dose equivalent ,HP(d), at different depths (d=0.07mm, 3mm, 10mm) is an impor...

متن کامل

Dose distribution and dosimetry parameters calculation of MED3633 palladium-103 source in water phantom using MCNP

Background: Palladium-103 (103Pd) is a brachytherapy source for cancer treatment. The Monte Carlo codes are usually applied for dose distribution and effect of shieldings. Monte Carlo calculation of dose distribution in water phantom due to a MED3633 103Pd source is presented in this work. Materials and Methods: The dose distribution around the 103Pd Model MED3633 located in the center of 30×...

متن کامل

The comparison between 6 MV Primus LINAC simulation output using EGSnrc and commissioning data

Introduction: Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy. The purpose of this research is comparison between 6 MV Primus LINAC simulation output with commissioning data using EGSnrc and build a Monte Carlo geometry of 6 MV Primus LINAC as realistically as possible. The BEAMnrc and DOSXYZnrc (EGSnrc package) M...

متن کامل

An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method

Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...

متن کامل

A method for range calculation of proton in liquid water: Validation study using Monte Carlo method and NIST data

Introduction: The main advantage of using ion beams over photons in radiotherapy is due to their inverse depth-dose profiles, allowing higher doses to tumors, while better sparing normal tissues. When calculating dose distributions with ion beams, one crucial point is the uncertainty of the Bragg-peak range. Recently great effort is devoted to enhance the accuracy of the comput...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011